Subarcsecond imaging of 3C 273 at 150 MHz

Sean Mooney, John Quinn, Leah Morabito, Frits Sweijen, LBWG, SKSP, et al.

Context

- 1st identified quasar
- *z* = 0.158
- Emission mechanism of X-ray knots not well-understood
- Counterjet not detected
- Low-frequency spectrum relatively unexplored
- ≤ 1" resolution required to resolve jet

Feature nomenclature

- Naming convention from Jester et al. (2007)
- In1, In2, Ex1, fs, and S are unrelated galaxies or stars

- 1. Resolve the jet at 150 MHz
- 2. Measure the diffuse emission
- 3. Detect or set an upper-limit on the flux of a possible counterjet

Analysis

- Took 12h HBA and 12h LBA data in 4h observations (LC7_017, LC8_032)
- Presenting best HBA observation here
- Steps (carried out in the Singularity image):
 - a. Prefactor (international baselines included; 3C 295 model courtesy of Frits)
 - b. Long-baseline pipeline
 - c. Self-calibration
- Initial model of 3C 273 provided by Christian

Jet morphology at 150 MHz

LOFAR compared with HST and VLA

LOFAR (image, contours)

VLA 15 GHz (image, contours), LOFAR (filled contours)

Perley & Meisenheimer (2017)

Extract knots from LOFAR image

LOFAR (image, contours)

LOFAR image with knots marked

Knot SEDs

Explaining the X-ray emission via IC/CMB & SSC has been effectively ruled out by, among other arguments:

- Proper motion studies suggest low relativistic bulk speeds (Γ < 2.9; Meyer+ 17)
- γ-ray flux predictions from IC/CMB & SSC models exceed observational upper limits from *Fermi*-LAT (Meyer+ 15)

Prevailing theory is X-ray emission is synchrotron from a 2nd population of particles

Can LOFAR be useful modeling this scenario?

Knot SEDs

• LOFAR extends SEDs down in frequency

by 1–2 orders of magnitude

• Knots A, B2, & C2 appear fainter than expected from extrapolations of GHz data

Knot B1 not shown but upper limit can be set

Knot SEDs

Warnings:

- Flux scale bootstrapped off the VLA measurements of the core so we assume the core flux is invariable on decadal timescales
- Artefacts around the core affects measured core flux
- Uncertainties need to be quantified (originating from demarcating knots & flux calibration)

Diffuse emission & jet power – VLA data

Diffuse emission & jet power – LOFAR data

0	0	٥°ک
		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		·0

robust -2

robust -0.5

Diffuse emission & jet power – LOFAR data

Diffuse emission & jet power

Diffuse flux density gives estimate of jet kinetic power via scaling relation, e.g. Willott+ 99, Punsly 05:

 $Q \approx \left(\frac{f}{15}\right)^{1.5} \times (1.1 \times 10^{45}) \times (X^{1+\alpha} Z^2 S_{151})^{0.857}$ $Z \equiv 3.31 - 3.65 \times (X^4 - 0.203X^3 + 0.749X^2 + 0.444X + 0.205)^{-0.125}$ $X \equiv 1 + z$

Punsly & Kharb 16 estimated the jet power as 0.7–3.7 \times 10^{44} erg s^{-1}

TBD...

Counterjet?

- Not detected at any wavelength or at VLBI
- Dynamic range of HBA image means the upper limit set here does not improve on previous works
- Nevertheless we use the counterjet upper limit to constrain 0.69c < v < c and $\Gamma > 1.4$
- Perhaps best chance to detect counterjet is with the LBA?

Next steps

- Some improvements could be made to improve final image quality:
 - a. Including extra 8h?
 - b. Tinkering with selfcal parameters?
 - c. Rerunning analysis using initial model derived from current image?
- Spectral index map with VLA?
- Investigate new low-frequency features
- Calculate diffuse flux density
- Submit paper to MNRAS

Conclusions

- First ~0.2" resolution image <1 GHz of 3C 273
- All knots detected except for B1 as expected
- Some additional morphological features at 150 MHz that need to be examined more carefully
- Low frequency observations are ideal for calculating the diffuse flux and jet kinetic power
- These observations expand the data on the SEDs of the knots by 1–2 orders of magnitude and could be used in models to explain processes behind high-energy emission
- No sign of a counterjet but if there is one, LOFAR is the instrument best placed to find it!